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Abstract. Facetting of a vicinal surface is due to an arrangement of parallel primary steps which is com-
mensurate with the substrate in plane periodicity (for instance one step every pth atomic row). It was
shown by [4] that such a locking requires an interaction between steps together with a finite step stiffness.
But this early approach only reveals part of the story, as it is limited to sharp solid-vacuum interfaces in
which thermal excitation of energetically expensive kinks controls all fluctuations. In this paper the prob-
lem is taken afresh in a language which applies equally well to “soft” interfaces, with important changes
in the conclusions.

PACS. 61.30.Hn Surface phenomena: alignment, anchoring, anchoring transitions, surface-induced layer-
ing, surface-induced ordering, wetting, prewetting transitions, and wetting transitions – 61.30.-v Liquid
crystals

The roughening transition of a regular facet z = 0 is a
compromise between the capillary energy of the interface
and a periodic pinning potential with a period a along
the normal z axis. At low temperatures small terraces are
bounded by sharp steps. Beyond a critical temperature TR

these terraces coalesce, and steps span the whole width of
the interface, which becomes rough. Such a transition has
been widely studied [2,3]: it is dual to a 2d (X,Y ) model
(the role of low and high temperatures are interchanged).
A similar facetting occurs for vicinal surfaces, in which a
regular array of parallel steps with distance d acts to tilt
the interface. Although in the same universality class as
for a regular facet, such a transition is somewhat differ-
ent, as it corresponds to a commensurate arrangement of
d with the lattice spacing b along the plane. That problem
was studied long ago [4] in the case of solid-vacuum inter-
faces, for which steps and kinks are essentially atomic en-
tities. The step energy then dominates everything and the
roughening temperature TR is close to the kink energy ε
within logarithmic corrections. The situation is different
for broad steps as befits a solid-liquid interface. We take
that problem afresh, using the same approach for both
limits, and we show that TR rapidly decreases as d grows.
We thus complement the pioneering work of [4].

1 Properties of a planar facet

They were discussed long time ago, for instance by the
author in [1]. Consider the (100) facet of an orthorhombic
crystal. In a first approximation we ignore the periodicity
in the (x, y) plane of the interface: the crystal is a stack of

structureless plates. The lattice spacing in the normal z
direction is a. We describe the surface distortions within a
simple continuous model z(x, y), corresponding to an en-
ergy (at finite temperature “energy” means “free energy”)

E =
∫

dxdy
[
γ

2
(grad z)2 + V cos

2πz
a

]
(1)

γ is a surface tension, V a potential that pins the surface
onto crystal planes. We assume that V is small, as might
be the case at a solid-liquid interface. At zero tempera-
ture T , such a model allows for “solitons” that connect
planar regions z = 0 and z = a: these are the crystal steps
of the facet, with a width ξ0 ≈ a

√
γ/V and an energy per

unit length β0 ≈ a
√
γV . Note that β0ξ0 ≈ γa2. At this

stage β does not depend on the azimuth ϕ of the step in
the (x, y) plane.

For an unpinned surface (V = 0), thermal fluctuations
follow from equipartition of each Fourier component, z2

k =
T/γk2. The net fluctuations of the local amplitude z are
Gaussian, given by

z2 =
1

4π2

∫
2πk dk

T

γk2
=

T

2πγ
Log

L

ξ
· (2)

The upper and lower cutoffs are respectively the width L
of the facet and the step width ξ. When the periodic po-
tential V is restored, it couples fluctuation modes with
different k – hence the difficulty. The roughening transi-
tion at T = TR separates a high temperature “rough”
state in which fluctuations of z diverge logarithmically,
from a low temperature facetted state in which they are
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bounded. As shown in [1], a very simple argument yields
TR in lowest order in V : we need only calculate the first
order average pinning energy U of an L×L square, which
requires the zeroth order fluctuations of z:

U = V L2 cos
2πz
a

= L2V exp

[
−2π2z2

a2

]
·

Using (2), we obtain

U = V L2

(
ξ

L

)πT/γa2

·

Hence two situations:
(i) if T > 2

πγa
2, the power of L is negative: pinning is

less and less relevant as the scale L grows, the surface is
macroscopically free, hence rough.
(ii) if T < 2

πγa
2 the power is positive: pinning is more

and more efficient. Fluctuations stop when U ≈ T, which
defines a characteristic length L ≈ ξ – the width of the
crystal step.

The roughening transition occurs at

TR =
2
π
γa2. (3)

Such a naive calculation is only exact in first order in V .
It holds in all cases if γ is taken to be the surface free
energy at TR instead of the original T = 0 energy (in
the renormalization approach of Kosterlitz and Thouless,
fixed point properties correspond to V = 0). For weak
pinning fancy methods are not necessary in order to find
TR – in contrast they are crucial in finding critical be-
haviour near the transition.

2 Facetting of a vicinal surface

We now tilt the interface: the normal stays in the (z, x)
plane and it is rotated by a small angle θ. We denote
by (x, y, z) coordinates referred to the crystal planes, by
(x, y, z) those referred to the average surface. Well sepa-
rated steps parallel to the y axis appear if θ � a/ξ: we
restrict ourselves to such a vicinal regime. The step dis-
tance along the x axis is d, such that tgθ = a/d. The
surface energy per unit length dx may be written as

E (n) = γ0 + βn+Eint (n)

n = 1/d is the step density, γo the perfect facet surface
energy, β the step energy, Eint their interaction, what-
ever their origin (entropic, elastic, electrostatic...). All
known mechanisms yield a 1/d2 repulsion: we thus write
Eint (n) = λn3, where λ is an ad hoc coefficient. Since the
surface length dx = dx/ cos θ, it follows that the surface
energy of the vicinal surface is γ (θ) = E (n) cos θ. All the
physics lies in E (n) – for instance the equilibrium shape.

A vicinal surface is always rough if there is no periodic-
ity inside the crystal planes: for such a stack of structure-
less plates steps can slide freely along the interface. When-
ever a step sweeps by a given point M, the height shifts

by ±a, hence random fluctuations that produce the log-
arithmic divergence of a free surface (albeit with a much
reduced amplitude). The only way to avoid roughness is to
lock the steps onto an underlying periodicity in the x di-
rection: a facetted state is then a commensurate arrange-
ment of steps, arising from a combination of periodicity
and step interactions. The roughening transition is the
loss of that commensurability due to thermal fluctuations.
We consider only the very simplest case of a (1, 0, p) facet:
a step appears every pth row in the x direction, so that
the step distance d = pb, where b is the lattice spacing
along the x axis. Assuming b 6= a allows a clear identi-
fication of the roles played by the two periodicities. Our
goal is to find the roughening temperature TR (p) of such
a higher order facet using the same naive argument in-
troduced for the original (0, 0, 1) facet. In that way we
do not use specific details of the commensurate structure:
the only information we need is the “stiffness” γeff of the
vicinal surface, and the “period” aeff along the normal x
to the real surface. Using (3) we obtain at once TR (p).

It is clear that a vicinal surface is anisotropic. Let us
consider a fluctuation z (x, y) with wave vector (kx, ky):
the corresponding cost in energy may be written as

dU =
1
2
[
γ̃xk

2
x + γ̃yk

2
y

]
z2 dx

γ̃ is the effective surface stiffness that controls surface
deformations. Fluctuations with a wave vector kx perpen-
dicular to the step correspond to a compression wave of
the latter: γ̃x is due only to step interactions, according to

dU =
1
2
E′′ (n) δn2 dx =

1
2
E′′

δθ2

a2 cos3 θ
dx.

Equating the two expressions of δU yields

γ̃x =
6λ tan θ
a3 cos3 θ

· (4)

In contrast fluctuations with wave vector ky correspond
to an undulation wave of steps, with three distinct effects:
(i) Steps are lengthened, by a factor[

1 +
1
2

(
∂δu

∂y

)2
]

where δu (y) is the local displacement of the steps along
the x axis.
(ii) They are rotated by an angle δφ = ∂δu/∂y, which in
turn affects their energy β (φ) (periodicity in the (x, y)
plane means loss of rotational invariance: the step param-
eters β and λ depend on the azimuthal angle φ). The joint
energy cost of lengthening and rotation may be written as

dU =
1
2
β̃ k2

y δu
2n dx

where β̃ = β + β′′ is the “step stiffness”, which must be
positive for the step to be stable. Strictly speaking the
single step energy β should be replaced by the full energy
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per step, E/n, which includes the interaction with neigh-
bours: for simplicity we assume that n is small enough for
that correction to be negligible.
(iii) Finally the distance between steps is reduced from d
to d cos δφ, which affects their interaction. But we just
neglected that interaction energy when compared to the
bare β: in order to be consistent we should also ignore the
correction due to δd. Note that including these effects is
straightforward if needed!

In order to transform these data into a γ̃y, we note
that each step which sweeps by a given x raises z by a,
from which we infer δz = na δu. Since dU is also

dU =
1
2
γ̃yk

2
yδz

2 dx =
1
2
γ̃yk

2
yδz

2 cos2 θ
dx

cos θ

we finally obtain

γ̃y =
β̃

a sin θ
· (5)

What matters for us is the mean square fluctuation of z
in the absence of inplane periodicity

z2 =
1

4π2

∫
dkxdky

T

γxk2
x + γyk2

y

·

Stiffness only enters through the combination

γeff =
√
γxγy =

√
6λβ̃

a2 cos2 θ
· (6)

The results (4) to (6) are well known (see for instance [1]):
we rederive them in order to emphasize the underlying
physics. Note that γeff is nearly constant for a small tilt
angle θ: the large variations of γx and γy cancel out.

We finally need aeff : by definition it is the smallest
distance along the z axis after which the same surface
energy is recovered. It corresponds to a translation by a
lattice spacing b in the x direction, not along the z axis.
It follows that

aeff = b sin θ =
a cos θ
p
· (7)

Using (3) we obtain a very simple result for the roughening
temperature

TR =
2
π

√
6λβ̃

p2
· (8)

That expression (8) is the central result of this paper. It
relies on two approximations, one minor (corrections to λ
and β̃ can easily be included), the other one more fun-
damental (we use zero temperature properties instead of
fixed point quantities at TR). Basically we assume that
scaling does not renormalize γeff too much. Let us empha-
size again that (7) and (8) are the only new features in
our argument: they build on existing knowledge.

Note that facetting depends crucially on step interac-
tion, as surmised correctly by [4]: without interactions a
given step would necessarily wander and commensurate
locking could not occur! A question then comes naturally

to one’s mind: can a purely entropic repulsion lead to
facetting? A positive answer would be surprising, since
more entropy could hardly be expected to produce order!
Indeed it cannot occur! The entropic repulsion has been
calculated exactly by [5] (the original calculation of [6], us-
ing a mapping on a free fermion gas, is off by a factor 2).
One thus finds

λ =
π2T 2

6β̃
·

When inserted into (8) that would lead to (9)

TR = T
2
p2

(9)

(note that the step stiffness β̃ disappears), a condition
that can never be met for the large p of a vicinal surface.
A standard roughening transition triggerred by entropic
step interaction is thus impossible. only genuine mechan-
ical interactions can do the job, as shown by [7].

3 Comparison with the results for solid
vacuum interfaces

According to (8), TR goes to 0 as the index of the vicinal
surface grows. Such a conclusion looks dramatically differ-
ent from that of [4], who claim that TR is always close to
the kink energy ε: why? The answer to that question sits in
the stiffness parameter β̃. While the elastic interaction λ
does not depend much on the nature of the interface, the
stiffness β̃ is much larger for the narrow steps of a vacuum
interface than it would be for the broad steps of a liquid
interface. Qualitatively, the only way to make a step wan-
der is to create kinks, and sharp kinks cost energy! The
resulting Boltzmann factor leads to a fast increase of β̃ at
low temperatures, which dominates everything else.

In order to make that handwaving argument precise,
we first define kinks and we calculate the step stiffness
directly. A tilted single step develops localized kinks, who
have an energy ε of atomic scale. The kink width ζ along
the step is such that εζ ≈ βb2 (in an atomic picture ζ
is the lattice spacing c along the y axis). At any finite
temperature there exists a finite density of kinks

nK =
exp (−ε/T )

ζ
·

Two situations may then hold:
(i) T & ε: thermal kinks are numerous, the step moves
freely. The anisotropy of β (φ) is not dramatic and β̃ is
comparable to the step energy β. The result (8) should
then hold as such.
(ii) T � ε: step fluctuations depends on the displacement
of a few kinks and the step is far stiffer. β̃ is easily found
calculating the step correlation function

G (y) = [x (y)− x (0)]2
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for large y in two ways. On a macroscopic scale

G =
1
π

∫ ∞

0

dk
T

β̃k2
2 (1− cos ky) =

T y

β̃
·

On the kink scale, kinks are of either sign, leftward or
rightward, and step fluctuations are due to a local excess of
kinks of one type. A length y of step contains N = nKy/c
kinks, and standard combinatorics yields G (y) = Nb2. It
follows that

β̃ =
Tc

b2
exp (ε/T ) . (10)

Carrying (10) into (8) we see that the roughening temper-
ature is a solution to

exp (ε/T ) =
π2

24
p4b2T

λ ζ
· (11)

That should be compared with the result [4] which reads

exp (ε/T ) =
2T
Wp

(12)

Wp is the second derivative of the step interaction energy
on a length ζ

Wp = λζ

[
1

(d+ b)2 +
1

(d− b)2 −
2
d2

]
≈ 6λζ
p4b2
·

In practice the two results agree in that limit, but for
numerical factors!

In such an “atomic limit”, what matters is the value
of ε. A roughening temperature cannot be much smaller
than ε: if it were the stiffness β̃ would increase exponen-
tially, thereby blocking fluctuations. In the opposite limit
of a small ε the stiffness does not vary much with tem-
perature: the behaviour predicted by (8) is then clearly
apparent (if p increases one always returns to the strong
coupling limit). It is interesting, however, to note that (8)
is always valid: the 1/p2 behaviour is just hidden when β̃
is calculated in the strong coupling limit!

Our conclusion is that the roughening transition of vic-
inal surfaces provides a useful test of step interactions,
with one caveat: the result of [4] holds only for sharp vac-
uum interfaces, and it should not be used inconsiderately.
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